
AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 1

Q.2 a. Explain with the help of an example how floating point numbers are stored.

Answer: Pg. No. 21 of C & Data Structures, P.S. Deshpande and O.G. Kakde, Dreamtech

Press, 2005

b. What do you understand by forced conversions? Explain with example.

Answer: Pg. No. 26 of C & Data Structures, P.S. Deshpande and O.G. Kakde, Dreamtech

Press, 2005

c. Differentiate between logical and arithmetic shift.

Answer: Pg. No. 43 of C & Data Structures, P.S. Deshpande and O.G. Kakde, Dreamtech

Press, 2005

d. Do the following conversions:
 (i) (25)8 = (?)16
 (ii) (A21)16 = (?)10

Answer: (i) 15
 (ii) 2593

Q.3.a. Can any of the three initial expressions in the for statement be omitted? If so, what are the
consequences of each omission?

Answer:

• From the syntactic standpoint all three expressions need not be included in the for
statement, though the semicolon must be present.

• However the consequences of an omission should be clearly understood.

• The first and third expressions may be omitted if other means are provided for
initializing the index and/or altering the index.

• If the second expression is omitted, however, it will be assumed to have a permanent
value of 1 (true); thus, the loop will continue infinitely unless it is terminated by some
other means, such as break or a return statement.

• As a practical matter, most for loops include all three expression.

 b. Write a program that will read a positive integer and determine and print its binary
 equivalent.

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 2

Answer: #include<stdio.h>
 #include<conio.h>
 void showbits(int h)
 {
 if(h==1)
 printf("%d",h);
 else
 {
 showbits(h/2);
 printf("%d",h%2);
 }
 }
 void main()
 {
 int nu;
 void showbits(int h);
 printf("Num?");scanf("%d",&nu);
 printf("\nBin eq of %d is ",nu);
 showbits(nu);

 }

 c. What is the output of the following program.

 const int a=124;
 void main()
 {
 const int *sample();
 int *p;
 p=sample();
 printf(“%d”,*p);
 }
 const int *sample()
 {
 return (&a);
 }

Answer: Output = 124

d. Write a C program to reverse a given number.

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 3

Answer:
#include<stdio.h>

 void main()
 {
 int num, rno=0,rem=0;
 printf(“Input the number to be reversed\”);
 scanf(“%d”,&num);
 while(num !=0)
 {
 rem=num%10;
 rno = rno *10+rem;
 num = num/10;
 }
 Printf(“ the reversed number is = %d “, rno);
 }

Q.4.a. Distinguish between the following
 i) int (*m)[5]; and int *m[5]
 ii) int (*ptr)(); and int *ptr()

Answer:

i) int (*m)[5] = means m is an integer pointer to the 5th element of the array
 int *m[5] = means m is an array of 5 integer pointer

ii) int (*ptr)() = ptr is a pointer to a function that returns return integer
 int *ptr() = ptr is a function that return integer pointer

 b. Write a program to show how elements of an array can be accessed using pointers.

Answer: Pg. No. 88 of C & Data Structures, P.S. Deshpande and O.G. Kakde, Dreamtech

Press, 2005

 c. With the help of an example show sequence of execution during function calls.

Answer: Pg. No. 104 of C & Data Structures, P.S. Deshpande and O.G. Kakde, Dreamtech

Press, 2005

 Q5 a. Write a program to copy the contents of one file into another file using command line
arguments.

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 4

Answer:
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

void main(int arg,char *arr[])
{
 FILE *fs,*ft;
 char ch;
 clrscr();
 if(arg!=3)
 {
 printf("Argument Missing ! Press key to exit.");
 getch();
 exit(0);
 }

 fs = fopen(arr[1],"r");
 if(fs==NULL)
 {
 printf("Cannot open source file ! Press key to exit.");
 getch();
 exit(0);
 }

 ft = fopen(arr[2],"w");
 if(ft==NULL)
 {
 printf("Cannot copy file ! Press key to exit.");
 fclose(fs);
 getch();
 exit(0);
 }

 while(1)
 {
 ch = getc(fs);
 if(ch==EOF)
 {
 break;
 }
 else
 putc(ch,ft);
 }

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 5

 printf("File copied succesfully!");
 fclose(fs);
 fclose(ft);
}

b. How is a string stored in memory? Is there any difference between string and character
array? Write a C program to copy one string to another using pointers and without using
library functions.

Answer:
A C string is a character sequence terminated with a null character ('\0', called NUL in ASCII). It is
usually stored as one-dimensional character array.
In C these are almost the same, though a string will have an additional null character at the end

#include<stdio.h>
#include<conio.h>
void stcpy(char *str1, char *str2);
void main()
{
 char *str1, *str2;
 clrscr();
 printf(“nnt ENTER A STRING…: “);
 gets(str1);
 stcpy(str1,str2);
 printf(“nt THE COPIED STRING IS…: “);
 puts(str2);
 getch();
}
void stcpy(char *str1, char *str2)
{
 int i, len = 0;
 while(*(str1+len)!=’′)
 len++;
 for(i=0;i<len;i++)
 *(str2+i) = *(str1+i);
 *(str2+i) = ‘′;
}

 c. What is a bit field? Why are bit fields used with structures?

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 6

Answer: In addition to declarators for members of a structure or union, a structure declarator can
also be a specified number of bits, called a "bit field." Its length is set off from the declarator for the
field name by a colon. A bit field is interpreted as an integral type.

struct-declarator:

declarator

type-specifier declarator opt : constant-expression

struct
{
 unsigned short icon : 8;
 unsigned short color : 4;
 unsigned short underline : 1;
 unsigned short blink : 1;
} screen[25][80];

Q.6.a. What is a heap? Write a C program to sort an array of integers using the heap sort method.
 Given: 6, 5, 3, 1, 8, 7, 2, 4 are elements of an array, show the different stages of sorting.

Answer:
A heap is a specialized tree-based data structure that satisfies the heap property: if B is a child node
of A, then key(A) ≥ key(B). This implies that an element with the greatest key is always in the root
node, and so such a heap is sometimes called a max-heap. (Alternatively, if the comparison is
reversed, the smallest element is always in the root node, which results in a min-heap.)

/* array of MAXARRAY length ... */
#define MAXARRAY 5

/* preform the heapsort */
void heapsort(int ar[], int len);
/* help heapsort() to bubble down starting at pos[ition] */
void heapbubble(int pos, int ar[], int len);

int main(void) {
int array[MAXARRAY];
int i = 0;

/* load some random values into the array */
for(i = 0; i < MAXARRAY; i++)
array[i] = rand() % 100;

/* print the original array */

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 7

printf("Before heapsort: ");
for(i = 0; i < MAXARRAY; i++)
{
printf(" %d ", array[i]);
}
printf("\n");

heapsort(array, MAXARRAY);

/* print the `heapsorted' array */
printf("After heapsort: ");
for(i = 0; i < MAXARRAY; i++)
{
printf(" %d ", array[i]);
}
printf("\n");

return 0;
}

void heapbubble(int pos, int array[], int len)
{
int z = 0;
int max = 0;
int tmp = 0;
int left = 0;
int right = 0;

z = pos;
for(;;) {
left = 2 * z + 1;
right = left + 1;

if(left >= len)
return;
else if(right >= len)
max = left;
else if(array[left] > array[right])
max = left;
else
max = right;

if(array[z] > array[max])
return;

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 8

tmp = array[z];
array[z] = array[max];
array[max] = tmp;
z = max;
}
}

void heapsort(int array[], int len)
{
int i = 0;
int tmp = 0;

for(i = len / 2; i >= 0; --i)
heapbubble(i, array, len);

for(i = len - 1; i > 0; i--)
{
tmp = array[0];
array[0] = array[i];
array[i] = tmp;
heapbubble(0, array, i);
}
}
Let { 6, 5, 3, 1, 8, 7, 2, 4 } be the list that we want to sort from the smallest to the largest

1. Build the heap

Heap newly added element swap elements
nil 6
6 5
6, 5 3
6, 5, 3 1
6, 5, 3 ,1 8
6, 5, 3, 1, 8 5, 8
6, 8, 3, 1, 5 6, 8
8, 6, 3, 1, 5 7
8, 6, 3, 1, 5, 7 3, 7
8, 6, 7, 1, 5, 3 2
8, 6, 7, 1, 5, 3, 2 4
8, 6, 7, 1, 5, 3, 2, 4 1, 4
8, 6, 7, 4, 5, 3, 2, 1

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 9

Sorting.

Heap swap
elements

delete
element sorted array details

8, 6, 7, 4, 5,
3, 2, 1 8, 1 swap 8 and 1 in order to delete 8

from heap
1, 6, 7, 4, 5,
3, 2, 8 8 delete 8 from heap and add to

sorted array
1, 6, 7, 4, 5,
3, 2 1, 7 8 swap 1 and 7 as they are not in

order in the heap
7, 6, 1, 4, 5,
3, 2 1, 3 8 swap 1 and 3 as they are not in

order in the heap
7, 6, 3, 4, 5,
1, 2 7, 2 8 swap 7 and 2 in order to delete 7

from heap
2, 6, 3, 4, 5,
1, 7 7 8 delete 7 from heap and add to

sorted array
2, 6, 3, 4, 5,
1 2, 6 7, 8 swap 2 and 6 as thay are not in

order in the heap
6, 2, 3, 4, 5,
1 2, 5 7, 8 swap 2 and 5 as they are not in

order in the heap
6, 5, 3, 4, 2,
1 6, 1 7, 8 swap 6 and 1 in order to delete 6

from heap
1, 5, 3, 4, 2,
6 6 7, 8 delete 6 from heap and add to

sorted array

1, 5, 3, 4, 2 1, 5 6, 7, 8 swap 1 and 5 as they are not in
order in the heap

5, 1, 3, 4, 2 1, 4 6, 7, 8 swap 1 and 4 as they are not in
order in the heap

5, 4, 3, 1, 2 5, 2 6, 7, 8 swap 5 and 2 in order to delete 5
from heap

2, 4, 3, 1, 5 5 6, 7, 8 delete 5 from heap and add to
sorted array

2, 4, 3, 1 2, 4 5, 6, 7, 8 swap 2 and 4 as they are not in
order in the heap

4, 2, 3, 1 4, 1 5, 6, 7, 8 swap 4 and 1 in order to delete 4
from heap

1, 2, 3, 4 4 5, 6, 7, 8 delete 4 from heap and add to
sorted array

1, 2, 3 1, 3 4, 5, 6, 7, 8 swap 1 and 3 as they are not in

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 10

order in the heap

3, 2, 1 3, 1 4, 5, 6, 7, 8 swap 3 and 1 in order to delete 3
from heap

1, 2, 3 3 4, 5, 6, 7, 8 delete 3 from heap and add to
sorted array

1, 2 1, 2 3, 4, 5, 6, 7,
8

swap 1 and 2 as they are not in
order in the heap

2, 1 2, 1 3, 4, 5, 6, 7,
8

swap 2 and 1 in order to delete 2
from heap

1, 2 2 3, 4, 5, 6, 7,
8

delete 2 from heap and add to
sorted array

1 1 2, 3, 4, 5, 6,
7, 8

delete 1 from heap and add to
sorted array

 1, 2, 3, 4, 5,
6, 7, 8 completed

 b. Write a C program to search for an element using binary search.

Answer:
 #include "stdio.h"
 binarysearch(int a[],int n,int low,int high)
 {
 int mid;
 if (low > high)
 return -1;
 mid = (low + high)/2;
 if(n == a[mid])
 {
 printf("The element is at position %d\n",mid+1);
 return 0;
 }
 if(n < a[mid])
 {
 high = mid - 1;
 binarysearch(a,n,low,high);
 }
 if(n > a[mid])
 {
 low = mid + 1;
 binarysearch(a,n,low,high);
 }
 }

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 11

 int main()
 {
 int a[50];
 int n,no,x,result;
 printf("Enter the number of terms : ");
 scanf("%d",&no);
 printf("Enter the elements :\n");

 for(x=0;x<no;x++)
 {
 scanf("%d",&a[x]);
 printf("Enter the number to be searched : ");
 scanf("%d",&n);
 result = binarysearch(a,n,0,no-1);
 }
 if(result == -1)
 {
 printf("Element not found");
 return 0;
 }

Q.7.a. Write a C program to convert the given infix expression into its equivalent postfix form.

Answer:
 #include<stdio.h>
 #include<conio.h>

#define MAX 20

int i=0,j=0,top=-1;
char infix[MAX],suffix[MAX],stack[MAX],push(),pop();

main()
{
 clrscr();
 printf("\nEnter a valid infix expression:");
 scanf("%s",infix);

while(infix[i]!='\0')
 {
 switch(infix[i])
 {
 case '(': push(infix[i]); /* push (on to stack */
 break;
 case '+': push(infix[i]); /* push the operators on to stack */
 break;

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 12

 case '-': push(infix[i]);
 break;
 case '*': push(infix[i]);
 break;
 case '/': push(infix[i]);
 break;
 case ')': while(stack[top]!='(') /* pop all elements from stack
until a (is encountered */
 suffix[j++]=pop();
 pop(); /* pop the (from stack */
 break;
 default: suffix[j]=infix[i]; /* if infix[i]=operand,put it
directly in suffix[] */
 j++;
 } /* end switch */
 i++;
 } /* end while */

 while(top!=-1) /* when stack is not empty */
 {
 if(stack[top]=='(') /* if stack top is (then remove it */
 pop();
 suffix[j++]=pop(); /* pop the remaining stack elements on to suffix */
 }
 printf("\nConverted suffix expression:");
 for(i=0;suffix[i]!='\0';i++)
 printf("%c",suffix[i]);
 getch();
 }

char push(char x) /* x= pushed element */
 { /* a= stack top */
 char a=stack[top];
 while((a!='(') && ((x=='+'|| x=='-')&&(a=='*'||a=='/')) || (x=='-' && a=='+'))
 {
 suffix[j++]=pop(); /*{1:The element or operator x is pushed on to */
 a=stack[top]; /* stack only if the stack top has a lower */
 } /* precedence than the operator to be pushed. */
 stack[++top]=x; /* 2:If the stack top operator has higher precedence */
 } /* than the operator to be pushed then the stack */
 /* top is poped to suffix[]. */
 /* 3:Now the next operator in the stack becomes the */
 /* stack top and step 1. is repeated.

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 13

} */
char pop()
{
 return(stack[top--]);
}

 b. Write a C program to implement the working of a queue of integers using an array.
 Provide the following operations.
 i) insert ii) delete iii) display

Answer:

#include<stdio.h>
#include<conio.h>

int cirque[10],front,rear,n;
int del();
void insert(int);
void display(int);
int empty(int,int);
char full=0;

main()
{
 char c;
 int ch,x;

 clrscr();
 printf("\nInput the size of the queue==>");
 scanf("%d",&n);
 front=rear=0;
 do
 {
 printf("Press 1 for inserting\n");
 printf("Press 2 for deleting\n");
 printf("Press 3 for displaying the queue\n");
 printf("Press 4 to exit\n");
 printf("Enter your choice==>");
 scanf("%d",&ch);

 switch(ch)
 {
 case 1: printf("\nEnter the element to be inserted==>");
 scanf("%d",&x);

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 14

 insert(x);
 break;

case 2: printf("\nThe element deleted is %d",del());
break;

 case 3: display(front);
 break;
 }
 }while(ch!=4);
 }

void insert(int x)
{
 if(!full) /* if queue is not full */
 {
 cirque[rear++]=x; /* insert at the rear end */
 if(rear==n)
 rear=0;
 if(rear==front)
 {
 printf("Queue full!\n");
 full=1;
 }
 return;
 }
 else
 {
 printf("Queue Overflow!\n");
 return;
 }
}

void display(int front)
{
 if(front!=rear||full)
 {
 int i;
 for(i=1;i<=n;i++)
 {
 printf("%d\n",cirque[front++]);
 if(front==n)
 front=0;
 if(front==rear)
 break;

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 15

 }
 }
}

int del()
{
 int y;
 if(empty(front,rear))
 {
 printf("Queue undeflow\n"); /* if the queue is already empty */
 return(0);
 }
 y=cirque[front++]; /* delete at the front end */
 if(front==n)
 front=0;
 if(front==rear)
 {
 printf("Queue is empty!\n");
 front=rear=0;
 full=0;
 }
 return(y); /* to display the deleted element */
}

int empty(int front,int rear)
{
 if(front==rear && !full)
 return(1);
 else
 return(0);
}

 c. Write a C function to insert an element after a given node in a singly linked list.

Answer:

void ins_aft(node *current)
{

 int rno; /* Roll number for inserting a node*/
 int flag=0;
 node *newnode;
 newnode=(node*)malloc(sizeof(node));
 printf("\nEnter the roll number after which you want to insert a node\n");
 scanf("%d",&rno);
 init(newnode);

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 16

while(current->next!=NULL)
 {
 /*** Insertion checking for all nodes except last ***/
 if(current->roll_no==rno)
 {
 newnode->next=current->next;
 current->next=newnode;
 flag=1;
 }
 current=current->next;
 }
 if(flag==0 && current->next==NULL && current->roll_no==rno)
 {

/***Insertion checking for last nodes ***/
 newnode->next=current->next;
 current->next=newnode;
 flag=1;
 }
 if(flag==0 && current->next==NULL)
 printf("\nNo match found\n");

}

Q.8.a. Give the order of visitation of the binary tree shown in the following figure.

i) Preorder traversal: A B D E H I C F J G K
ii) Inorder traversal : D B H E I A F J C G K
iii) Postorder traversal: D H I E B J F K G C A

 b. Write an C function to insert an element into a binary search tree.

void insert(int val)
{
int f=0;
struct tree *n,*parent;
n=(struct tree*)malloc(sizeof(struct tree));
n->no=val;

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 17

n->l=n->r=NULL;
if (root==NULL)
{
root=n;
return;
}
parent=search(val ,&f);
if(f==1)
{
printf("\n\n\n DUPlicate number");
free(n);
return;
}
else if(val>parent->no)
parent->r=n;
else
parent->l=n;
}

 c. Write a C function to search for an item in a binary search tree.

struct tree * search(int val,int *found)
{
struct tree *p=root,*par=NULL;
while(p!=NULL)
{
if(val==p->no)
{
*found=1;
break;
}
else if(val>p->no)
{
par=p;
p=p->r;
}
else
{
par=p;
p=p->l;
}
}
return par;
}

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 18

Q.9.a. Write a C program for BFS traversal. Explain the same with the help of an example.

Answer:

#include <stdio.h>
#define N 10
void bfs(int adj[][N],int visited[],int start)
{

 int q[N],rear=-1,front=-1,i;
 q[++rear]=start;
 visited[start]=1;
 while(rear != front)
 {
 start = q[++front];
 if(start==9)
 printf("10\t");
 else
 printf("%c \t",start+49); //change to 65 in case of alphabets
 for(i=0;i<N;i++)
 {
 if(adj[start][i] && !visited[i])
 {
 q[++rear]=i;
 visited[i]=1;
 }
 }
 }

}
int main()
{
 int visited[N]={0};
 int adj[N][N]={{0,1,1,0,0,0,0,0,0,1},
 {0,0,0,0,1,0,0,0,0,1},
 {0,0,0,0,1,0,1,0,0,0},
 {1,0,1,0,0,1,1,0,0,1},
 {0,0,0,0,0,0,1,1,0,0},
 {0,0,0,1,0,0,0,1,0,0},
 {0,0,0,0,0,0,0,1,1,1},
 {0,0,1,0,0,0,0,0,0,0},
 {0,0,0,1,0,0,0,0,0,0},
 {0,0,1,0,0,0,0,1,1,0}};

 bfs(adj,visited,0);
 return 0;
}

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 19

Example: The following figure (from CLRS) illustrates the progress of breadth-first search on the
undirected sample graph.

a. After initialization (paint every vertex white, set d[u] to infinity for each vertex u, and set the
parent of every vertex to be NIL), the source vertex is discovered in line 5. Lines 8-9 initialize Q to
contain just the source vertex s.

b. The algorithm discovers all vertices 1 edge from s i.e., discovered all vertices (w and r) at level 1.

c.

d. The algorithm discovers all vertices 2 edges from s i.e., discovered all vertices (t, x, and v) at level
2.

e.

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 20

f.

g. The algorithm discovers all vertices 3 edges from s i.e., discovered all vertices (u and y) at level 3.

h.

i. The algorithm terminates when every vertex has been fully explored.

b. Explain with the help of examples the following:

i. Adjacency Matrix

ii. Linked Adjacency Lists

Answer: The Adjacency matrix of an n-vertex graph G = (V, E) is an n*n matrix A. Each of A is
either 0or 1. Let V= {1, 2…n}. If G is an undirected graph, then the elements of A are defined as
follows:

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 21

A(i,j) = {1 if (i,j) belongs to E or (j,i) belongs to E
 {0 otherwise

If G is an digraph, then the elements of A are defined as follows:

A(i,j) = {1 if (i,j) belongs to E
 {0 otherwise

a) A(i, j) =0, 1<=i<=n for all n-vertex graph.
b) The adjacency matrix of an undirected graph is symmetric. I.e., A(i,j) = A(j,i), 1<=i<=n ,

1<=j<=n.
c) For n-vertex undirected graph, A(i,j)= A(i,j) = di .
d) For n-vertex digraph, A(i,j)= di

out = A(i,j) = di
in , 1<=i<=n.

ii. Linked Adjacency Lists

Answer:
In this representation, each adjacency list is represented as a chain. An array H of head nodes of type
chain keeps track of adjacency lists.

X: Linked Adjacency list for Fig (I) as follows:

AE52/AC52/AT52 C & DATA STRUCTURES DECEMBER
2012

© IETE 22

Linked Adjacency list for Fig (II) as follows:

TEXTBOOK

C & Data Structures, P.S. Deshpande and O.G. Kakde, Dreamtech Press, 2005

